Fully Secure Self-Updatable Encryption in Prime Order Bilinear Groups
نویسندگان
چکیده
In CRYPTO 2012, Sahai et al. raised the concern that in a cloud control system revocation of past keys should also be accompanied by updation of previously generated ciphertexts in order to prevent unread ciphertexts from being read by revoked users. Self-updatable encryption (SUE), introduced by Lee et al. in ASIACRYPT 2013, is a newly developed cryptographic primitive that realizes ciphertext update as an inbuilt functionality and thus improves the efficiency of key revocation and time evolution in cloud management. In SUE, a user can decrypt a ciphertext associated with a specific time if and only if the user possesses a private key corresponding to either the same time as that of the ciphertext or some future time. Furthermore, a ciphertext attached to a certain time can be updated to a new one attached to a future time using only public information. The SUE schemes available in the literature are either (a) fully secure but developed in a composite order bilinear group setting under highly non-standard assumptions or (b) designed in prime order bilinear groups but only selectively secure. This paper presents the first fully secure SUE scheme in prime order bilinear groups under standard assumptions, namely, the Decisional Linear and the Decisional Bilinear Diffie-Hellman assumptions. As pointed out by Freeman (EUROCRYPT 2010) and Lewko (EUROCRYPT 2012), the communication and storage, as well as, computational efficiency of prime order bilinear groups are much higher compared to that of composite order bilinear groups with an equivalent level of security. Consequently, our SUE scheme is highly cost-effective than the existing fully secure SUE.
منابع مشابه
Self-updatable encryption with short public parameters and its extensions
Cloud storage is very popular since it has many advantages, but there is a new threat to cloud storage that was not considered before. Self-updatable encryption that updates a past ciphertext to a future ciphertext by using a public key is a new cryptographic primitive introduced by Lee, Choi, Lee, Park, and Yung (Asiacrypt 2013) to defeat this threat, in which an adversary who obtained a past ...
متن کاملFully, (Almost) Tightly Secure IBE and Dual System Groups
We present the first fully secure Identity-Based Encryption scheme (IBE) from the standard assumptions where the security loss depends only on the security parameter and is independent of the number of secret key queries. This partially answers an open problem posed by Waters (Eurocrypt 2005). Our construction combines the Waters’ dual system encryption methodology (Crypto 2009) with the Naor-R...
متن کاملDual System Encryption Framework in Prime-Order Groups via Computational Pair Encodings
We propose a new generic framework for achieving fully secure attribute based encryption (ABE) in prime-order bilinear groups. It is generic in the sense that it can be applied to ABE for arbitrary predicate. All previously available frameworks that are generic in this sense are given only in composite-order bilinear groups, of which operations are known to be much less efficient than in prime-...
متن کاملFully Secure Unbounded Revocable Attribute-Based Encryption in Prime Order Bilinear Groups via Subset Difference Method
Providing an efficient revocation mechanism for attribute-based encryption (ABE) is of utmost importance since over time an user’s credentials may be revealed or expired. All previously known revocable ABE (RABE) constructions (a) essentially utilize the complete subtree (CS) scheme for revocation purpose, (b) are bounded in the sense that the size of the public parameters depends linearly on t...
متن کاملEfficient Hidden Vector Encryptions and Its Applications
Predicate encryption is a new paradigm of public key encryption that enables searches on encrypted data. Using the predicate encryption, we can search keywords or attributes on encrypted data without decrypting the ciphertexts. In predicate encryption, a ciphertext is associated with attributes and a token corresponds to a predicate. The token that corresponds to a predicate f can decrypt the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014